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METHODS 

Hydrographic Regimes 

We conducted a review and synthesis of hydrologic data of the Upper Snake River that 

was published as a technical report to the Reclamation, Boise, Idaho.  This report titled: “Review 

and Synthesis of Riverine Databases and Ecological Studies in the Upper Snake River, Idaho” 

(Hauer et al 2002), provides important background data and analysis used in the interpretation of 

the data presented herein.  We refer the reader to that report; however, we have included 

essential duplicative data here.  We have also conducted additional analyses that are specific to 

the questions addressed in this report and play a significant role in the interpretations and 

recommendations appearing below. 

The discharge data presented throughout this report are based on the daily discharge 

records obtained from the United States Geological Survey stream flow database for Idaho, 

http://id.water.usgs.gov/ and Wyoming, http://wy-water.usgs.gov/. 

 

Temperature and Groundwater-Surface Water Interactions 

 Temperature data were obtained in selected regions of the Fisher floodplain to examine 

thermal variation and its distribution across unconfined river reaches that showed strong 

affinities for groundwater – surface water interactions.  Temperature loggers were placed in 

hydrogeomorphic locations showing groundwater return to selected off-channel aquatic habitats.  

Loggers were placed in the study habitats and secured with iron rebar and plastic coated wire.  

Each logger collected temperature data oC at 2hr intervals from mid-August 2001 to mid 

November 2002.  
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 Groundwater – surface water interactions on the Fisher floodplain were documented by 

placing piezometers into the floodplain substratum at various locations along the river gradient 

of the floodplain.  Piezometers were installed using the methods described in Baxter et al. (2003) 

and were analyzed for vertical hydraulic gradient (VHG) which as a correlative measure of the 

piezometric surface and position of “upwelling” (+VHG) and “downwelling” (-VHG) zones on 

the floodplain. 

 

Remotely Sensed Hyperspectral Data 

Airborne remotely sensed data were collected with an AISA hyperspectral imagery 

system from Spectral Imaging, Oulu, Finland.  The AISA system consists of a compact 

hyperspectral sensor head, miniature GPS/INS sensor, and system control and data acquisition 

unit. The AISA hyperspectral sensor is operated from the aircraft at the height (1000m) and 

speed (87kts) required to generate a 1x1m pixel resolution.  Waveband configuration for digital 

data acquisition is from 256 individual spectral wavebands (400 to 950 nm) arrayed into 20 

aggregate bands. The system also requires an aircraft top-mount of a real-time fiber-optic 

downwelling irradiance sensor (FODIS) that provides radiometric correction data for post-

processing of surface reflectance.  The GPS/INS is a Systron-Donner C-MIGITS III with Digital 

Quartz Inertial measurement unit (DQI) which tags each image line from the AISA sensor.  The 

GPS coordinates are derived from 10 to 12 GPS satellites depending on satellite positions.  The 

GPS data are linked with the inertial referencing of the C-MIGITS III to correct for pitch, roll 

and yaw of the aircraft during data acquisition.  Data are stored during acquisition on a hot-swap 

removable U160 SCSI drive.   
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The remote sensing data were collected along predetermined flight lines oriented along 

the long axis of the study floodplains and having flight line overlaps of 40-50%.  All data were 

collected within a time period of 1.5 hrs either side of solar noon.  We selected the clearest days 

possible during a sampling interval spanning several weeks to capture flow and vegetation 

attributes that were targeted for the particular season and to maximize the quality of the imagery 

data. 

Individual flight lines were cross-referenced with existing Digital Ortho Photo 

Quadrangles (DOQs) to examine the spatial positioning of each flight line.  If an individual flight 

line needed further geo-rectification, then additional GCPs (ground control points) were added to 

improve the rectification in a given flight line. All geo-rectified flight lines had a mean RMS 

(root mean square) error of less than 4 meters (Table 1). The RMS error is an estimate of how 

close a given pixel is to its true location.  Once all flight lines were geo-rectified for a given 

reach they were then stitched together to create a final mosaic.  Minor color-balancing between 

flight lines were applied during the mosaiking process.  All geo-rectification and mosaiking were 

completed in Erdas Imagine 8.5.  

In addition to rectification errors, rapid turbulence experienced during data acquisition 

occasionally caused the aircraft to roll at a rate faster than the GPS/IMU data stream.  

Turbulence Induced Error (TIE) during image acquisition resulted in image distortion for some 

areas.  These distortions were highly localized and appear as waves in the imagery.  Rectification 

errors as well as errors caused by aircraft turbulence affect accuracy assessments causing 

portions of the image to be spatially offset from the true location.  Rectification errors are 

inherent in virtually all remotely sensed data.  The rectification errors we encountered represent 

variation generally less than 5% for all reaches. 
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Water Depth and Velocity Ground-truth 
 

A Sontek RS3000 Acoustic Doppler velocity-Profiler (ADP) was used to acquire detailed 

water depth and vertical profile measurements of flow velocity along channel reaches within the 

study floodplains. The ADP uses 3 transducers to generate a 3 MHz sound pulse into the water.  

As the sound travels through the water, it is reflected in all directions by particulate matter (e.g., 

sediment, biological matter) carried with the flow.  The sonar signal is most strongly reflected 

from the bottom substrate providing a measure of water depth.  Some portion of the reflected 

energy travels back toward the transducer where the processing electronics measure the change 

in frequency as a Doppler shift.  The Doppler shift is correlated to the velocity of the water.  The 

ADP operates using three transducers generating beams with different orientations relative to the 

flow of water.  The velocity measured by each ADP transducer is along the axis of its acoustic 

beam.  These beam velocities are converted to XYZ (Cartesian) velocities using the relative 

orientation of the acoustic beams, giving a 3-D velocity field relative to the orientation of the 

ADP.  Since it is not always possible to control instrument orientation, the ADP includes an 

internal compass and tilt sensor to report 3-D velocity data in Earth (East-North-Up or ENU) 

coordinates, independent of instrument orientation.  Hence, it is possible to determine the mean 

flow velocity in separate cells through the water column oriented perpendicular to the flow field.  

Table 1.  Mean RMS errors generated for each reach.  The RMS error provides an estimate of how far 
off a given pixel is from its true location. 
 

Swan 3.3
Conant 3.8
Fisher 3.3
Heise 3
Twin 2.8

Mean RMS error
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By measuring the return signal at different times following the transmit pulse, the ADP measures 

water velocity at different distances from the transducer beginning just below the water surface 

and continuing to the bottom.  The water velocity profile is measured and displayed as a series of 

separate 15 cm deep cells from top to bottom.  Each recorded cell measurement is the average of 

several hundred measures over a 5 second time intervals.   

We deployed the ADP from the front of a small jet-boat with both velocity profile data 

and depth data correlated spatially by linking a GPS (Global Positioning System) receiver co-

located with the position of the ADP (Figure 5).  During data acquisition the ADP was 

maneuvered back and forth across the channel to obtain data from as full an array of aquatic 

habitats, depths and velocities as possible.  Both the ADP and GPS data were recorded 

simultaneously on a field laptop computer.  The ADP data were then processed to create an 

integrated velocity value (average velocity for an individual ADP profile), as well as a depth 

value for each GPS location.      

Four ADP surveys were collected in summer and fall of 2002 for each floodplain reach 

(June 20-22, August 17-20, September 24–26, November 25-26).  The Heise reach was excluded 

from the November ADP survey due to technical difficulties with the ADP. The ADP data were 

obtained for base flow discharge at 1,500 cfs, and at discharges of 5,000, 8,000 and 11,500 cfs 

(Figure 6). Over 25,000 discrete measures of depth and flow velocity were recorded during the 

ADP surveys (Table 2).   

 
 
Initial Depth and Velocity Classification 

 
The integrated velocity and depth data from the ADP were combined with the September 

hyperspectral data for all reaches in a GIS to classify the variance in spectral reflectance of water  
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Figure 5. Illustration of linkage between remotely sensed hyperspectral data, which is 
geospatially explicit and the field data collection of depth (h) and velocity (V) using a boat 
mounted Acoustic Doppler Velocity Profiler (ADP) in conjunction with a Global 
Positioning System (GPS).  All ADP data were GPS tagged to relate directly with the 
hyperspectral data. 
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Figure 6. Annual hydrograph of Water Year 2002 illustrating the discharge and times of the 
year that ADP data were collected from the study floodplains of the Snake River . 

Date Total number of profiles
June 20 -22 8,654
August 17- 20 9,449
September 24 - 26 5,571
November 25-26 1,434

25,108

Table 2.  Total number of measures taken with the ADP of water depth and integrated flow 
               velocities for each sample date shown in Figure 6. 
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depth and flow velocity.  An unsupervised classification approach (ISODATA, Iterative Self-

Ordering Data Analysis, Tou and Gonzalez 1977) was used to generate similar categories of 

spectral reflectance (Figure 7).  Once an unsupervised classification of spectral reflectance was 

generated, the ADP data were distributed in the GIS environment to aggregate classes and assign 

unique depth and velocity categories.  All reaches were classified into five depth categories 

(<0.5, 0.5 – 1, 1 – 1.5  , 1.5 – 2.0 , and > 2.0 m) and five velocity categories ( < 0.5, 0.5 – 1.0, 1.0 

– 1.5, 1.5 – 2, and > 2.0 m/s).  These initial classifications of water depth and flow velocity 

(Figure 8) provided the basis for modeling depths and velocities at both higher and lower river 

stages. The ranges for each category were a function of the range of depths and flow velocity 

obtained with the ADP and the resolution that can be achieved from the hyperspectral imagery.  

Two methods were used to assess the accuracy of the depth and velocity classifications. 

Traditionally, the accuracy of a classification is assessed by comparing the reference data (e.g., 

ADP survey data) with values on the classification map.  This method is generally referred to as 

the ‘pure’ accuracy assessment.  However, in spatial representations of continuous data (e.g.,  

depth and velocity data) where sharp boundaries between classes rarely occur, it is preferable to 

apply a ‘fuzzy’ assessment of classification accuracy (Gopal and Woodcock 1994, Muller et al. 

1998).  The ‘fuzzy’ assessment allows determination of variance within the reference data and its 

departure from that classified in adjacent classes (i.e., one class above or one class below the 

depth or velocity classification being tested).   Error matrices were generated for each floodplain, 

and include both the ‘pure’ and ‘fuzzy’ assessments (Table 3).   

Some of the error between measured and classified depths and velocities are undoubtedly 

related to the rectification errors and the distortions discussed above caused by TIE, as well as 

error associated with the relative accuracy of the GPS.  The accuracy of real time GPS data  
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Table 3. Accuracy assessment for all reaches at 5000 cfs; summarized  
              as pure and fuzzy percentages.  

Flood Plain Pure(%) Fuzzy(%) Pure(%) Fuzzy(%)
Swan 60 97 33 74
Conant 53 89 43 85
Fisher 61 91 62 88
Heise 72 94 52 90
Twin 47 86 50 87

Depth Velocity

Figure 7.  Unsupervised classification of hyperspectral data extracting spectral reflectance 
characteristics of water.  These data illustrate the variation in spectral reflectance used to classify 
hydraulic characteristics.  
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Figure 8. ADP data were distributed in the GIS environment to aggregate classes and assign 
unique depth and velocity categories. These initial classifications of water depth and flow 
velocity, illustrated here, form the basis of the following hydraulic and habitat classifications.    
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varies as a function of the number of satellites available and their position in the sky. In addition, 

both velocity and depth are recorded as the average velocity over a 5 second interval.  Thus, 

depending on flow and geomorphic conditions, an individual profile could be an average of 

multiple flow and depth conditions for a given GPS location. Hence, the true ADP position can 

be as much as 3 to 4 m away from the GPS recorded position resulting in variance between the 

measured ADP profile and the hyperspectral imagery. 

Rectification errors, aircraft turbulence distortions, and GPS errors (Figure 9) all 

contribute to potential misclassifications in the accuracy assessments. These errors account for 5 

to 15% of the error in the ‘pure’ accuracy assessment.   However, the use of the ’fuzzy’ 

assessment helps minimize these affects, by evaluating classification within the context of 

neighboring classes.  While the ‘fuzzy’ assessment may overestimate the classification accuracy, 

the ‘pure’ assessment clearly underestimates the accuracy.  Despite the various sources of 

potential error, hydrologic and geomorphic structure (i.e., depth and velocity) and the associated 

aquatic habitats (i.e., pools, riffles, rapids and shallows) all appear in appropriate juxtapositions 

and orientations in river channels and distributed across the floodplain in logical places that we 

were able to confirm through direct observation in the field.   

 

Creating a Floodplain Digital Elevation Model (DEM) 
            

We produced a detailed floodplain DEM from the hyperspectral imagery and ground 

based topographic surveys.  We then used the discharge stage level on the dates of the remote 

sensing image acquisitions to establish elevation reference from which to evaluate water depth 

across all discharges.  This allowed delineation of floodplain areas likely to be inundated and 

reworked during potential flooding events. 
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Figure 9.  Typical rectification errors and misalignment of ADP tracks caused by inherent GPS 
error, georectification error and turbulence during hyperspectral data collection.  
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One-meter contour intervals were derived by re-sampling the 30 m resolution USGS 

DEM information. These data were superimposed onto the co-registered, hyperspectral imagery 

to provide first-order estimates of floodplain slopes.  However, this level of topographic 

information was not of sufficient resolution to delineate detailed floodplain topography, 

especially critical features such as relic backwater channels that may provide new channels 

following future avulsions.  Moreover, it is not feasible to use traditional survey methods to 

measure the topography adequately over the many square kilometers represented by our 

floodplain study reaches.  To obtain sufficient topographic information for our modeling needs, 

we combined focused topographical survey information with airborne remote sensing data to 

assign relative elevations to classified floodplain cover type features (Figure 10).  

Topographic surveys were conducted along transects that extended across the floodplain. 

These transects were chosen to include a broad range of topography (e.g., slope, elevation) 

across as many cover type features as possible.   Other features captured by these surveys 

included relative elevations and slopes between gravel bars, water surface and bank top 

elevations throughout the floodplain reach.  Unsupervised and supervised classifications of the 

airborne hyperspectral remote sensing imagery were conducted to classify major land cover 

features, including vegetation (e.g., grassland, forest), side channels, springbrooks, cobble bars, 

terraces and others.  The survey data was then overlaid on the various classified cover types and 

assigned a relative elevation to the main channel, as well as a typical slope value, to characterize 

the transition from one cover type to the next.  For example, water surface elevation in the main 

channel was set to zero in all cross-sections and all other cover types were assigned relative 

elevations (i.e., +/- change in elevation from the main channel).  Hence, relative elevations and 

slopes, both across and between cover types, were assigned to the identified major land cover  
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Figure 10.  Survey data points are represented by red dots in the hyperspectral image of the Fisher 
floodplain (top panel). A cross-sectional plot of the survey data is shown in the lower panel.  
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features classified from the hyperspectral imagery.  With this combination of data (i.e., survey 

data, hyperspectral imagery, and the USGS DEM) we were able to produce a high resolution 

DEM of each floodplain. 

Floodplain inundation was modeled at 10cm stage increments using the higher resolution 

DEM.  We compared modeled flood inundation, with geo-rectified imagery on June 20, 2002 

(~11, 000 cfs) and April 12, 2003 (~1500 cfs) to match discharge with inundation extent for each 

reach.   Similarly, we used airborne video taken on June 17, 1997 (~37000 cfs) to generate flood 

inundation maps for each reach. These three inundation maps (Figure 11) were used to calibrate 

our stage-discharge relationships for each reach.   

 

Modeling Flow Depth and Velocity at Higher Discharges 

We modeled flow velocity at varying discharges by establishing a basic relationship 

between velocity and river stage for all reaches. This relationship was developed by multiple 

measures of flow and depth at various discharge levels during the duration of our study 

(discussed above).  Our modeling algorithms also included flow velocities for areas of the 

floodplain where flow velocity decreases as stage increases due to incorporation of large flow 

resistance elements.  However, we were not able to accurately predict the formation or existence 

of slow or even calm “eddy drop zones” that occur on the shorelines bordering the downstream 

end of a riffle or rapid that dumps into a run.  Fortunately, these water types do not represent a 

large portion of the total water surface area being modeled nor are they important for estimating 

avulsion processes. Although we were not able to directly model eddy drop zones in association 

with riffles and rapids, which are important potential aquatic habitats, we can accurately model  
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Figure 11. Colored lines show the extent of inundation for three different levels of discharge on 
this hyperspectral image of a portion of the Fisher floodplain. 
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changes in the associated water types (e.g. riffles, rapids and runs) and identify ecotones 

characterized by rapid change in velocity (see discussion of aquatic habitat below).  

Estimates of flow velocity for the flooding scenarios were based on the initial velocity 

classification generated from the September imagery (5,000 cfs).  Velocity was then increased 

according to equations (1) and (2) below, generated from depth-velocity relationships measured 

in the ADP surveys (Figure 12) and the data collected from a hand-held ADV (Acoustic Doppler 

Velocimeter) (Figure 13).  The hand-held ADV was used exclusively in shallow waters (< 1 m) 

where the boat-mounted ADP looses signal.  Equation 1 was used to simulate velocity for water 

depths > 0.8 m and equation 2 was used for water depths < 0.8 m, where x is the water depth at a 

given stage. 

 
y = 0.4493 ln(x) + 1.3986                                                  (1) 
 
y = 1.789(x) – 0.2042      (2) 
 
 

After velocity was modeled for a given stage, we set an upper limit on water velocity for 

each modeled depth based on a Froude threshold (Figure 14).  Using 10 cm stage increments, 

depths and velocities were modeled for each reach to represent discharge regimes from 1,500 cfs 

to 37,000 cfs.  To check the accuracy of the modeled velocities and depths, the ADP surveys 

from November (1,500 cfs), August (8,000 cfs), and June (11,000 cfs) were used as reference 

data.  For example, from the stage-discharge relationships in the Conant reach, we estimated the 

11,000 cfs discharge corresponded to a stage increase of 0.5 m.  Using the depths and velocities 

that were modeled at the 0.5 m stage increase, error matrices (Table 6) were generated from the 

appropriate ADP survey (i.e., the 11000 cfs survey) to validate the modeled results of depth and 

velocity (Figure 15).  Our modeled estimates of flow velocity are in the same range 
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Figure 12.  A plot of measured water depth and flow velocity for 25,308, locations from all 
floodplains in the study over 5 discharge levels. The log regression curve of these data was used to 
determine variation in flow velocity with change in stage.  

Figure 13.  Correlation between measured water depth and flow velocity 
for water depths < 0.8 m across in a single shallow riffle area.      
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Figure 14. A plot of Froude number vs water depth for all ADP measures. The red line represents 
the accepted Froude maximum used in the GIS modeling of flow velocities. 
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Figure 15.   A plot of the spatial distribution of modeled flow velocity for discharges of 8000 
11000, 20000, and 37000 cfs in the lower part of the Conant floodplain.  
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of accuracy we found for the original classification of the hyperspectral imagery at 5,000 cfs 

(Table 4).  However, we are much better at estimating flood velocities versus flow velocity for 

base flows.  This is probably due to the difference between local energy gradients increasing as 

stage drops making it difficult to accurately model a change in velocity based on a linear 

equation.  

 

Aquatic Habitats 
 

Aquatic habitats were derived from a combination of depth and velocity classification 

data, modeling output, and known relative positions of habitats associated with different channel 

and floodplain characteristics.  As 1x1m unique classifications, pixels of one classification may 

appear within a group of pixels classified to a different depth and velocity.  This often gives the 

appearance of stippling in the classified image.  In our habitat classification procedure, we first 

aggregated depth-velocity pixels (DVP) into common patches, plotted as polygons, by 

conducting a “majority filter” step in the GIS environment. Each filtered DVP patch was then 

assigned a unique aquatic habitat type.  The area and dimensions for each aquatic habitat across 

each of 5 discharges (1500, 5000, 11600, 25000, 37000 cfs) was then compiled through the GIS.  

We then analyzed the various characteristics of the aquatic habitat patches (e.g., patch shape, 

edge relationship, edge length).  

 

Vegetation classification 

The September imagery was used for land cover classification because of the high 

contrast between vegetation types during autumnal senescence.   A combination of supervised 

and unsupervised classifications was used to produce a land cover map for each reach.  First, an  
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Table 4. An example of error assessment tables for each class of depth and velocity for the  
             Conant Valley flood plain at 11,000 cfs.  

Conant  Velocity 11000 cfs

Reference (m/s)
Classified (m/s) 0 - 0.5 0.5 - 1 1 - 1.5 1.5 - 2 > 2

0 - 0.5 9 4 13 69.23 69.23
0.5 - 1 1 3 3 1 8 12.50 50.00
1 - 1.5 2 6 5 6 2 21 23.81 80.95
1.5 - 2 2 33 95 167 297 31.99 99.33

> 2 6 18 59 164 247 66.40 90.28

 Reference Total 11 15 63 163 334 586
0.46757679

81.82 6.67 7.94 58.28 49.10
548

0.93515358
81.82 46.67 65.08 98.16 99.10

Overall Classification Pure = 46.76%

Overall Classification Fuzzy = 93.52%

Producer's Accuracy 
Pure (% correct)

Producer's Accuracy 
Fuzzy (% correct)

Classified 
Total

User's Accuracy 
Pure (% correct)

User's Accuracy 
Fuzzy (% correct)

Conant  Depth 11000 cfs

Reference (m)
Classified (m) 0 - 1 1 - 1.5 1.5 - 2 > 2

0 - 1 19 7 11 3 40 47.50 65.00
1 - 1.5 17 10 3 30 33.33 100.00
1.5 - 2 25 63 77 9 174 44.25 85.63

> 2 1 15 131 196 343 57.14 95.34

 Reference Total 62 95 222 208 587
0.51448041

30.65 10.53 34.68 94.23
532

0.90630324
58.06 84.21 95.05 98.56

Overall Classification Pure = 51.45%

Overall Classification Fuzzy = 90.63%

Classified 
Total

User's Accuracy 
Pure (% correct)

User's Accuracy 
Fuzzy (% correct)

Producer's Accuracy 
Pure (% correct)

Producer's Accuracy 
Fuzzy (% correct)
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unsupervised classification was used to discriminate between vegetative cover and non-

vegetative cover (i.e. vegetation vs cobble and water).  This was followed by a supervised 

classification approach for the vegetative cover.  To help discriminate among different 

vegetation types, homogeneous stands of the varying cover types (e.g., cottonwood, willow, reed 

canary grass, dry grass) were identified and associated with specific hyperspectral signatures. 

These specific imagery signatures were used as “training areas” to classify the image into the 

different land cover types.  Mean spectral signatures (Figure 16) were calculated for each cover 

type and subsequently used in a supervised classification.  Using the spectral signatures, the 

Mixed Tune Matched Filtering (MTMF) algorithm in ENVI (RSI 2000) was then applied to the 

vegetative component of the imagery to discriminate the varying vegetation types. For each 

reach, a final land cover map was produced consisting of 8 dominant cover types (i.e., water, 

cobble, deciduous – predominately cottonwood, willow, mixed grasses, dry grasses, reed canary 

grass, and shadows).  In the Twin reach, willows were not easily differentiated from cottonwood; 

therefore, cottonwood and willow were aggregated into a single coverage identified as a 

“deciduous” category.  A pasture category was also added in the Conant reach.   

This method of classifying vegetation is a significant departure from approaches 

involving digitizing and photo-interpretation.  We were able to take this approach of conducting 

an integrated supervised and unsupervised classification because of the application of the 

hyperspectral imagery allowing vegetation specific differentiation.  We were also then able to 

conduct various analyses on the vegetation coverage that would not have been feasible using 

traditional photo-interpretation methods. 
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Figure 16. Mean spectral signatures of the hyperspectral reflectance data calculated for each 
cover type and subsequently used in a supervised classification.  


